6,174 research outputs found

    A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows IV: full Boltzmann and Model Equations

    Full text link
    Fluid dynamic equations are valid in their respective modeling scales. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the flow study in this regime. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well

    Rational design of mesoporous materials with Core/shell structures with applications for sustainability

    Get PDF
    Les matériaux mésoporeux sont devenus des nanomatériaux d’une grande importance, et le contrôle des structures des matériaux mésoporeux est essentiel pour une variété d'applications pratiques. Les matériaux «cœur/coquille» structurés sont un type de matériaux hybrides qui non seulement possèdent les propriétés des composants individuels, mais présentent également de effets synergiques entre le «cœur» et la «coquille». La conception de matériaux mésoporeux et «cœur/coquille» structurés pour les appliquer avec succès dans la pratique devrait être une force de progrès importante pour le développement continu. Cette thèse se concentre principalement sur deux aspects: (1) une conception de matériaux mésoporeux «cœur/coquille» structurés en vue de résoudre les problèmes de synthèse, qui entravent leurs nouvelles applications et (2) l'application de matériaux mésoporeux dans la capture du CO2 cyclique pour améliorer la durabilité des sorbants de CO2 en prenant avantage du concept de «cœur/coquille». Visant le cyclage de l’hydroxyde de calcium, une technologie attrayante pour la capture du CO2 à grande échelle, nous avons établi un nouveau mésoporeux «cœur/coquille» structuré à base de CaO qui présentait une grande stabilité et d'excellentes performances de résistance à l’attrition, attribuées aux avantages des matériaux mésoporeux et à la configuration de «cœur/coquille». Notre procédé de fabrication peut être facilement réalisé à grande échelle et répond aux exigences de la circulation entre des réacteurs en lit fluidisé. Les nanoparticules métalliques ont normalement tendance à se coaguler ensemble dans des réactions catalytiques, et sont difficiles à séparer. Par conséquent, nous avons démontré une synthèse de microsphères Fe3O4@C-Pd@mSiO2 à composants multiples et polyvalentes avec une structure «cœur/coquille» bien définie et des nanoparticules catalytiques de Pd confinées, et ayant des canaux mésoporeux ordonnés et facilement accessibles. Récemment, des méthodes diverses ont été proposées pour fabriquer un revêtement de matériaux mésoporeux sur un cœur par un processus de «soft-templating». Cependant, les diamètres des mésopores générés sont généralement très faibles (< 3 nm), ce qui peut limiter leurs nouvelles applications. Ici, nous avons réalisé la synthèse de microsphères «cœur/coquille» structurées superparamagnétiques possédant une coquille externe de silice mésoporeuse ordonnée à larges pores (4,5 nm), en adoptant un copolymère tribloc comme agent tensioactif directeur de structure.Mesoporous materials, especially ordered ones have become ones of great importance nanomaterials, which possess regular, uniform and interpenetrating mesopores in nanoscale. Morphology and texture controls towards mesoporous materials are critical for a variety of practical applications, the ultimate goal of which are the realization of their functional design. Core/shell composite materials are a type of functional hybrid materials which not only possess the properties of the individual components, but also exhibit some new or synergistic effects between the core and the shell. The design of mesoporous materials with unique core/shell configuration and multifunctions to make them successfully applied in practice, should be an important driving force for the continuous development of current material science. This thesis mainly focuses on two aspects: (1) careful design of core/shell structured mesoporous materials in order to solve the problem and difficulty in synthesis, which hinders their further applications and (2) application of mesoporous materials in cyclic CO2 capture to enhance the durability of CO2 sorbents by taking advantage of the core/shell concept. Aiming at the calcium looping cycle, an attractive technology for large-scale CO2 capture, we have prepared novel mesoporous core/shell structured CaO-based sorbents which exhibit highly stable cyclability and excellent attrition-resistance performances, attributed to advantages of both mesoporous materials and unique core/shell configuration. Our fabrication method could easily be realized in large-scale and meet the requirements of circulating fluidized bed reactors. Owing to their high surface energies, metallic nanoparticles normally tend to aggregate together during catalytic reactions, and their separation from a complex heterogeneous system is another obstacle. In this regards, we have demonstrated a facile and versatile synthesis of multicomponent and multifunctional microspheres Fe3O4@C-Pd@mSiO2 with well-defined core/shell structures, confined catalytic Pd nanoparticles and accessible ordered mesopore channels. Recently, various methods have been proposed for coating mesoporous shells on cores by soft-templating process. However, the generated mesopores are usually very small (< 3 nm), which may limit their further applications. In this work, we have accomplished the synthesis of superparamagnetic core/shell structured microspheres possessing an outer shell of ordered mesoporous silica with large pores (4.5 nm) by adopting triblock-copolymer Pluronic P123 as soft-template
    • …
    corecore